
Chapter 5

Conceptual Basis of General
Relativity

5.1 The story so far

We are at last ready to embark on our central task, namely, that of extending

Special Relativity to a theory which incorporates gravitation. In this section we will

consider the physical principles which guided Einstein in his search for the general

theory. There is a school of thought that considers this an unnecessary process,

but rather argues that it is sufficient to first state the theory and then investigate

its consequences. There seems little doubt, however, that consideration of these

physical principles helps gives insight into the theory and promotes understanding.

The mere fact that they were important to Einstein would seem sufficient to justify

their inclusion. If nothing else, it will help us understand how one of the greatest

achievements of the human mind came about.

Many physical theories today start by specifying a Lagrangian from which ev-

erything flows and we could adopt the same attitude with General Relativity.

Although this is a very beautiful way about going about things, in taking that

approach we would miss out on gaining some understanding of how the frame-

work of General Relativity is different from that of Newtonian theory and Special

Relativity. Moreover if we discover limitations in the theory, then there is more

chance of rescuing it by investigating the physical basis of the theory rather than

simply tinkering with the mathematics - an unfortunate trait of much of modern
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theoretical physics these days!

But before we embark on this exciting journey of discovery, we must first remind

ourselves of where we have got to. So far we have only discussed Special Relativity.

Here forces have only played a background role and we have never introduced

gravitation explicitly as a possible force. One aspect of Special Relativity is the

existence of a global inertial frame, all of whose coordinate points are always at

rest relative to the origin, and all of whose clocks run at the same rate relative

to the origin’s clock. From Einstein’s postulates we were led to the idea of the

spacetime interval ds2 which gave an invariant geometrical meaning to certain

physical statements. We discovered that the mathematical function that calculates

the spacetime interval is the metric, and so the metric of Special Relativity is

defined physically by lengths of rods and the readings of clocks. This closeness to

experiment is of course its strength.

Let us now ask the following question:

• Is is possible to construct a frame in which all clocks run at the

same rate?

This is a crucial question and we will show that in a non - uniform gravitational

field the answer, experimentally , is NO.

• So: Gravitational fields are incompatible with global Special Rela-

tivity i.e. it is impossible to construct a global inertial frame.

We shall see that in small regions of spacetime [ regions small enough that

non - uniformities of the gravitational field are too small to measure] one can always

construct a “Local Inertial Frame” [LIF]. In this sense we will have to build Special

Relativity into a more general theory.

5.2 The gravitational redshift experiment

This “gedänken” experiment was first suggested by Einstein. Suppose we have a

tower of height h on the surface of the earth. A particle of rest mass m is dropped

from the top of the tower and falls freely with the acceleration g [ see Figure 5.1 ].
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Figure 5.1: The Gravitational redshift experiment.

It reaches the ground with a velocity v =
√

2gh, so its total energy E, as measured

by an observer at the foot of the tower is

E = mc2 +
1

2
mv2 + O(v4) = mc2 + mgh + O(v4) . (5.1)

Suppose the observer has some magical method of converting all this energy into

a photon of the same energy [ this is a thought experiment after all! ]. Upon

its arrival at the top of the tower with energy Ē the photon is again magically

changed into a particle of rest mass m̄ = Ē/c2. It must be that m̄ ≤ m; otherwise,

perpetual motion could result, so Ē = mc2. We therefore obtain:

Ē

E
=

mc2

mc2 + mgh + O(v4)
= 1 −

gh

c2
+ O(v4) , (5.2)

and since E = hν and Ē = hν̄ we find:

ν̄ = ν

(

1 −
gh

c2

)

. (5.3)

We therefore predict that a photon climbing in the earths gravitational field will

lose energy and will consequently be redshifted. the redshift is:

Zg =
ν − ν̄

ν
=

gh

c2
. (5.4)

This was tested by Pound and Snider in 1965 using the Mossbauer effect [ photons

from atomic decay peak sharply at a particular frequency ]. They measured the

redshift experienced by a 14.4 Kev γ rays from the decay of 57Fe in climbing up
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Figure 5.2: Minkowski geometry for the Pound - Snider Experiment.

a 20 m tower by determining the speed at which a detector at the top must be

moved in order to maximize the detection rate i.e. the velocity blueshift balances

the gravitational redshift. They found:

Zg = 2.57 ± 0.26 × 10−15 . (5.5)

This experimental verification of Einstein’s thought experiment is a death - blow of

one’s chances of finding a simple special relativistic theory of gravity!

5.3 Non - existence of an inertial frame at rest on
earth

If Special Relativity is to be valid in a gravitational field, it is a natural first guess

to assume that the “laboratory” frame at rest on earth is an inertial frame. Let

us draw a spacetime diagram representing the above experiment [ see Figure 5.2 ].

We consider light as a wave, and look at two successive crests of the wave as they

move upward in the gravitational field. The top and bottom of the tower have

vertical world lines in this diagram since they are at rest. Light is shown moving

on a curved line, to allow for the possibility that gravity may act on on light in an

unknown way, deflecting it from a null path. But no matter how light is affected

by gravity the effect must be the same on both wave crests, since the gravitational

field is not time dependent. Therefore the two crests ’ paths are congruent, and
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we conclude from this hypothetical Minkowski geometry that

∆tt = ∆tb . (5.6)

But we know that ∆t = 1
ν , and since the Pound - Snider experiment tells us that

νb > νT we know that ∆tt > ∆b. Therefore we have to conclude that our answer

using Minkowski geometry is wrong!

• So the reference frame at rest on earth is not inertial!!

Is this the end of Special Relativity!!?..... Not quite. We have shown that a

particular frame is not inertial, not that there are no inertial frames. We will find

that there are certain frames which are inertial in a restricted sense, but before we

define these frames let us first consider what we mean by the mass of a body.

5.4 Mass in Newtonian theory

So far we have been rather vague about what we mean by the mass of a body.

Even in Newtonian theory we can ascribe three masses to any body which describe

quite different properties:

• Inertial mass mI : This is a measure of its resistance to change in

motion or inertia.

• Passive gravitational mass mP : This is a measure of its reaction to

a gravitational field.

• Active gravitational mass mA: This is a measure of its source

strength for producing a gravitational field.

Let us discuss each of these in turn. Inertial mass mI is the quantity occurring in

Newton’s second law [ F = mIa ]. It is a measure of a body’s inertia. Note that as

far as Newtonian theory, this mass has nothing to do with gravitation. The other

two masses however do.
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Figure 5.3: The Galileo Piza experiment.

Passive gravitational mass mP measures a body’s response to being placed in a

gravitational field. Let the gravitational potential at some point be Φ, then if mP

is placed at this point, it will experience a force on it given by

F = −mP∇Φ . (5.7)

On the other hand active gravitational mass mA measures the strength of the

gravitational field produced by the body itself. If mA is placed at the origin, then

the gravitational potential at any point a distance r from the origin is given by

Φ = −
GmA

r
. (5.8)

We will now see how these three masses are related in the Newtonian framework.

Galileo discovered in his famous Pisa experiments [ see Figure 5.3 ] that when

two bodies are dropped from the same height, they reach the ground together

irrespective of their internal composition.

Let’s assume that two particles of inertial mass mI
1 and mI

2 and passive grav-

itational mass mP
1 and mP

2 are dropped from the same height in a gravitational

field. We have:

mI
1a1 = F1 = −mP

1 ∇Φ ,

mI
2a2 = F2 = −mP

2 ∇Φ . (5.9)
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The observational result is a1 = a2 from which we get on dividing

mI
1

mP
1

=
mI

2

mP
2

. (5.10)

Repeating this experiment with other bodies, we see that this ratio is equal to a

universal constant α say. By a suitable choice of units we can take α = 1, from

which we obtain the result:

• inertial mass = passive gravitational mass.

This equality is one of the best tested results in physics and has been verified to 1

part in 1012.

In order to relate passive gravitational mass to active gravitational mass, we

make use of the observation that nothing can be shielded from a gravitational

field. Consider two isolated bodies situated at points Q and R moving under their

mutual gravitational attraction. The gravitational potential due to each body is

Φ1 = −
GmA

1

r
, Φ2 = −

GmA
2

r
. (5.11)

The force which each body experiences is

F1 = −mP
1 ∇QΦ2 F2 = −mP

2 ∇RΦ1 . (5.12)

If we taken the origin to be Q then the gradient operators are

∇R = r̂
∂

∂r
= −∇Q , (5.13)

so that

F1 =
GmP

1 mA
2

r2
r̂ , F2 =

GmP
2 mA

1

r2
r̂ . (5.14)

But by Newton’s third law F1 = F2, and so we conclude that

mP
1

mA
1

=
mP

2

mA
2

, (5.15)

and using the same argument as before, we see that

• Passive gravitational mass = active gravitational mass.
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That is why in Newtonian theory we can simply refer to the mass m of a body

where

m = mI = mP = mA . (5.16)

This may see obvious to you, but it has very deep significance and Einstein used

it as the central pillar for his equivalence principle.

5.5 The principle of equivalence

One important property of an inertial frame is that a particle stays at rest or moves

with uniform velocity unless it is acted on by a force [ Statement of Newton’s first

law ]. In the last section we discovered that bodies freely falling in a gravitational

field all accelerate at the same rate regardless of their internal composition. It

follows that relative to a non - rotating freely falling frame, at least locally, parti-

cles remain at rest or move in straight lines with uniform velocity, since this frame

accelerates at the same rate as particles do. By locally we mean that observa-

tions are confined to a region over which the variation of the gravitational field

is un - observably small. This leads to the following statement of the principle of

equivalence.

• POE 1: There are no local experiments which can distinguish non -

rotating free fall in a gravitational field from uniform motion in

space in the absence of a gravitational field.

We conclude that a non - rotating freely falling frame is a local inertial frame. Let’s

check this by viewing the Pound - Snider experiment from the view point of a freely

falling frame.

Let us take the particular frame to be at rest when the photon begins its upward

journey and falls freely after that. Since the photon rises a distance h, it takes a

time ∆t = h
c to arrive at the top. In this time, the frame has acquired a velocity

v = g∆t = gh
c downward relative to the tower.
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We can now use the redshift formula from section 2.2 to calculate the photon’s

frequency relative to the freely falling frame:

νff

νt
=

√

√

√

√

1 + gh/c2

1 − gh/c2
≈ 1 +

gh

c2
, (5.17)

so

νff = νt

(

1 +
gh

c2

)

≈ ν

(

1 +
gh

c2

)(

1 −
gh

c2

)

≈ ν , (5.18)

since we neglect terms of higher order [ as we did in section 5.2 ]. So there is no

redshift in a freely falling frame thus confirming that it is a local inertial frame.

Einstein noted one other coincidence in Newtonian theory which proved to be

of great importance in formulating the principle of equivalence. All inertial forces

are proportional to the mass of the body experiencing the force. There is one

other force which behaves in the same way, that is the force of gravitation. For,

if we drop two bodies in the earths gravitational field, they experience forces m1g

and m2g respectively. This coincidence suggested to Einstein that the two effects

should be considered as arising from the same origin. Thus he suggested that we

treat gravitation as as inertial effect as well, in other words as an effect which arises

from not using an inertial frame. Comparing the force mg of a falling body with

the inertial force ma suggests the following version of the principle of equivalence.

• POE 2: A frame linearly accelerated relative to an inertial frame

in special relativity is locally identical to a frame at rest in a grav-

itational field.

These two versions of the principle of equivalence [ POE 1, POE 2 ] can be vividly

clarified by considering the famous “gedänken” experiments of Einstein called the

lift experiments.

We consider an observer confined in a lift with no windows in it or other methods

of communication with the outside world. The observer is allowed equipment to

carry out simple dynamical experiments. The object of the exercise is to try and
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Figure 5.4: The lift experiments

determine the observers state of motion. Let us consider four cases [ see Figure 5.4

].

• Case 1: The lift is placed in a rocket ship in a part of the universe far

removed from gravitating bodies. The rocket is accelerated forward

with a constant acceleration g relative to an inertial observer. The

observer releases a body from rest and sees it fall to the floor with

acceleration g.

• Case 2: The rocket motor is switched off so that the lift undergoes

uniform motion relative to the inertial observer. A released body

is found to remain at rest relative to the observer in the lift.

• Case 3: The lift is next placed on the surface of the earth, whose

rotational and orbital motions are ignored. A released body is

found to fall to the floor with acceleration g.

• Case 4: Finally, the lift is placed in an evacuated lift shaft and

allowed to fall freely towards the center of the earth. A released

body is found to remain at rest relative to the observer.
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Figure 5.5: The bending of light

Clearly, from the point of view of the observer in the lift, cases 1 and 3 are

indistinguishable, as required by POE 2, and cases 2 and 4 are indistinguishable,

as required by POE 1.

This is the principle of equivalence between gravity and acceleration, and is

a corner stone of the theory of General Relativity. In more modern terminology,

what we have described is called the weak equivalence principle, “weak” because

it refers only to gravity. We shall later use the strong equivalence principle, which

says that one can discover how all the laws of physics behave in a gravitational

field by postulating that their laws in a freely falling inertial frame are identical to

their laws in Special Relativity i.e. when there are no gravitational fields.

5.6 The principle of equivalence in action

Let us now look at two examples of how we use the principle of equivalence.

5.6.1 Effect of gravity on light

Since we can think of light as having a mass hν
c2 , relative to an observer in an

accelerated lift, light will curve downwards [ see Figure 5.5 ]. Therefore by the

principle of equivalence, light will also be bent in a gravitational field [ examples:

light deflection due to the sun’s gravitational field; observed during a total solar

eclipse. Lensing of cosmological sources. ].
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5.6.2 Effect of gravity on time

Consider a rocket of height h undergoing acceleration g relative to an outside

observer. Let a light ray be emitted from the top (B) at time t = 0 and be received

at the bottom (A) at time t = t0 in the frame of the outside observer [ see Figure

5.6 ]. A second ray is emitted at t = ∆τ and received at t = t0 + ∆t.

One can show [ EXERCISE 5.1 ] that

∆τ = ∆t

(

1 +
gh

c2

)

, (5.19)

where we have assumed that gh
c2 ' 1 (i.e non - relativistic motion).

Using the equivalence principle we know that the same relation must apply of

there is a difference in gravitational potential ΦB −ΦA between two points B and

A in a gravitational field. i.e.

∆τ = ∆t
(

1 +
ΦB − ΦA

c2

)

. (5.20)

If A → ∞ where Φ = 0 [ no gravitational field ] and B is taken to be a general

point with position vector r, we expect

∆τ = ∆t

(

1 +
Φ(r)

c2

)

. (5.21)

Since Φ(r) is negative, the time measured on B ′s clock [ as seen by A at infinity ]

is less than the time measured on A′s clock, i.e. clocks run slow in a gravitational

field.

One can interpret this by imagining that the spacetime metric has the non -

Minkowski form:

ds2 = −
(

1 +
2Φ

c2

)

c2dt2 + dx2 + dy2 + dz2 . (5.22)

Then the proper time measured by a clock at fixed (x, y, z) in a time ∆t measured

at infinity is

dτ =
1

c

√
−ds2 , (5.23)

therefore

∆τ =
(

1 +
Φ

c2

)

∆t , (5.24)

for Φ
c2 ' 1. This corresponds to spacetime curvature.
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Figure 5.6: Space time diagram of rocket undergoing uniform acceleration g

5.6.3 Towards spacetime curvature

The world lines of free particles have been our probe of the possibility of construct-

ing inertial frames. In Special Relativity two such world lines which begin parallel

to each other remain parallel, no matter how far extended. This is exactly the

property that straight lines have in Euclidian geometry. It is natural, therefore,

to discuss the geometry of spacetime as defined by the worldlines of free particles.

In these terms Minkowski space is a flat space [ it is not Euclidian space because

the metric is indefinite (−+++) ]. To discuss non - uniform gravitational fields let

us consider the lift experiments again, this time making them big enough so that

variations of the gravitational field can be measured [ see Figure 5.7 ].

• Case 1: From the point of view of the observer in the lift, the two

bodies fall to the ground parallel to each other.

• Case 2: The bodies remain at rest relative to the observer.

• Case 3: The two bodies fall towards the center of the earth and

hence fall on paths which converge.
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Figure 5.7: The lift experiments again

• Case 4: The bodies appear to the observer to move closer together

because they are falling on lines that converge towards the center

of the earth.

We thus conclude that gravitational spacetime is therefore not flat - it is curved.

A classic example, which we will us many times to illustrate our ideas, is the surface

of a sphere or balloon. Locally straight lines on a sphere extend to great circles and

two great circles always intersect [ at the poles ]. Nevertheless, close to any point,

we can pretend the geometry is flat. This is true also for Riemannian spaces: they

all are locally flat, but the locally straight lines [ geodesics ] do not usually remain

parallel.

Einstein’s important advance was to see the similarity between Riemannian

spaces and gravitational physics. He identified the trajectories of freely falling

particles with the geodesics of a curved geometry: They are locally straight since

spacetime admits local inertial frames, but globally they do not remain parallel.


